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Abstract— Edge computing is an emerging paradigm whose
goal is to boost with proximity cloud resources the computa-
tional capability of otherwise weak devices. This is also useful
to reduce user perceived access latency to backend service. A
central mechanism in edge computing is cyber-foraging, i.e.,
the search and delegation to capable edge cloud processes of
tasks too complex, time consuming or resource intensive to
be running on user devices or low-latency demanding to be
running remotely, as a form of edge function. An edge function
is any network or device-specific process that may be run
on an edge process instead. Despite the recent interest for
this technology from industry and academia, cyber-foraging
techniques and protocols have yet to be standardized.

In this paper, we leverage decomposition theory to propose an
architecture whose aim is to provide insights in the design and
implementation of protocols for cyber-foraging of multiple edge
functions. In contrast with several existing solutions, we also
argue that the (distributed) cyber-foraging orchestration should
be policy-based and not ad-hoc solution, as opposed to either
a pure edge cloud burden or a device decision. To this end,
via simulations and leveraging decomposition theory, we show
how our approach can be used by edge computing providers
and application programmers to compare and evaluate different
alternative cyber-foraging solutions. Our decomposition-based
approach has general applicability to other network utility max-
imization problems, even outside the edge computing domain.

I. INTRODUCTION

The Internet of Things (IoT) paradigm supports interaction

with sensing and actuating devices distributed in the physical

environment, thus fostering the development of novel ap-

plications and services in several domains e.g., healthcare,

disaster response [3], home automation, or automotive, to

name a few. Typically, IoT deployments leverage cloud

computing to complement constrained local resources with

remote processing and storage capabilities (Data Centers). To

support the increasing demand for low-latency, responsive

and resource intensive applications, a fork of the cloud

computing paradigm (Mobile Edge Computing) has seen the

evolution of heterogeneous, federated clouds distributed at

the edge of the network. Edge computing [14] is enabled by

the ability to run powerful servers at the edge of the network

e.g., at a base station site, thus allowing applications hosted

on those edge servers to deliver low-latency and responsive

edge functions i.e. software capabilities run at the edge of

the network to leverage the advantages of user proximity and

local network information.
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In such scenario, distributed applications that require

low latency communications and context-based adaptation

and exploit such distributed resource infrastructure can be

conceived, also leveraging proximity to end users, data

sources (e.g., sensors) and actuators. For instance, an ap-

plication could be deployed as a composition of functions

that process data and video streams delivered by sensors,

e.g. a microscope camera being controlled remotely in a

tactile Internet, a phone or UAV camera hovering a disaster

scenario looking for survivals [3], or a vehicle inferring

the status of the road sending alerts to other subscriber

vehicles. Moreover, leveraging the current evolution trend

in networking towards network programmability (Software-

Defined Networking - SDN) and virtualization of network

functions (Network Function Virtualization - NFV [12],

[6]), specific traffic handling requirements and Service Level

Agreements could be flexibly handled through appropriate

network orchestration mechanisms [18] (a video optimizer

could be deployed to handle the video streams originated by

webcams). In a challenged edge computing scenario, e.g.,
for natural or man-made disaster response, or for Internet of

Medical Things (IoMT) applications, multiple processes need

to establish and maintain a set of virtual flows to guarantee

a set of Service Level Objectives, i.e., some acceptable

levels of network performance, to accomplish a phase or,

more generally, to provide a service. Several edge cloud

infrastructures arose in the research community, see e.g. [2],

[5], [15], [20], [21], as well as from industry initiatives, such

as ETSI Mobile Edge Computing [10].

Our contribution. In contrast with the vast majority

of these proposals, that either choose back-end driven on-

loading [7], [16] or mobile-driven offloading [2], [5], [15],

[20], we argue that leaving the flexibility of a choice to

application programmers and edge computing providers is

a wiser alternative, since it allows decisions to be made

considering several aspects, such as the type of process

(e.g., I/O or computation intensive), available orchestration

architectural options, as well as application and edge in-

frastructure providers’ goals. In some cases, client-driven

offloading algorithms are the only available option [10],

while in other cases they face many challenges, due to

the diversity of devices and to their scarce computational

resources available: (i) different operating systems need to

cooperate across a (ii) plethora of numerous apps, trying to

run (iii) accurate code profiling, and (iv) gauging optimal

offload conditions. Moreover, several related solutions focus



on the orchestration of a single edge function [2], [5], [16].

To capture the benefits of both alternative cyber-foraging

orchestration architectures, and the need of a more holistic

cyber-foraging orchestration, in this paper we propose a

policy-based architecture that leverages decomposition the-

ory to model the (holistic) cyber-foraging of multiple edge

functions. We analyze via simulations alternative decompo-

sition policies to evaluate competing (distributed) orchestra-

tion of both user and edge cloud resources.The goals of

our architecture were (i) to identify the minimum set of

mechanisms in the cyber-foraging problem, (ii) to propose

an edge computing protocol design tool that could be used to

evaluate and compare possible cyber-foraging architectures.

Paper organization. The remainder of the paper is or-

ganized as follows: in Section II we discuss related work.

In Section III we introduce the problem, in Section IV

we discuss how primal and dual decomposition techniques

can be applied to solve it. In Section V we propose two

iterative solutions based on primal and dual decomposition.

In Section VI we analyze the tradeoffs between the two

proposed primal and dual decompositions solutions in terms

of optimality, convergence speed and signaling overhead and

we conclude our work in Section VII.

II. RELATED WORK

Offloading Algorithms. Although the problem of function

placement over a distributed resource infrastructure has been

floated before, such as across distributed data centers [11]

and in network infrastructures [13], only recently some

authors have begun tackling such problem in an Edge/IoT

environment. Here we only show significant related work

to highlight our contributions. We classify these solutions

in two categories: i) solutions that focus on the problem of

offloading from mobile devices to the edge cloud, and ii)

solutions that focus on workload distribution among edge

nodes. In the first category, the burden of offloading decision

is usually placed on the end-user device. MAUI [5] and

CloneCloud [2] provide different optimization strategies for

the migrating part of the workload from a mobile device to

a server on the edge cloud. ThinkAir [20] is a framework

that allow to offload mobile computation on multiple virtual

machines exploiting parallelization. In the second category,

the offloading decision is typically assigned to a cloud

manager in either a centralized or distributed fashion. Our

work differs from these, since we do not argue for one

solution, but rather we propose a decomposition theory-based

architecture that can evaluate both approaches by merely

instantiating a few decomposition policies.

Decomposition Theory. Decomposition theory has been

used as a tool for architecting other network utility maxi-

mization problems before [17], [8], [9]. In [9] for example,

authors use decomposition theory to solve the virtual network

embedding, a constrained graph matching problem modeled

as network utility maximization. Other solutions used decom-

position theory for network utility maximization problems,

although most of their focus is on optimization for scarse

wireless resources [17] or scheduling for grid computing [4].

Our network utility maximization problem is different as

it uses decomposition theory to solve the cyber-foraging of

multiple edge functions, and takes a step forward from the

system architecture point of view by introducing a unifying

architecture, whose policies lead to several distributed cyber-

foraging solutions.

III. PROBLEM STATEMENT

Let us consider a network with n physical or virtual edge

computing nodes, with index set I = {1, . . . , n}, which

are required by the edge computing infrastructure to run

a set of (offloaded or onloaded) tasks or edge functions.

These edge functions have been sometimes considered in

a (chained) order, other times as standalone jobs to run at

the edge rather than on the IoT device. Edge functions may

require implementing network mechanisms or preprocessing

of application data. Examples of (virtual) network edge

functions, may be a stateful firewall, a deep-packet inspection

process, or a load balancer, while examples of applications

functions may be histological image preprocessing, data

partitions or aggregations for very large database queries,

real-time (vehicle’s plate) image recognition, video encoding

and compression, or even a public key encryption.

Edge function mapping requests may arrive at any time

in an online fashion. We assume that each edge computing

node i can be assigned at most a bundle of edge functions

Bi(t), as a subset of the resources available at time t. An

edge function bundle Bi(t) to run on the edge process i ∈ I
is a list of (virtual) functions that must be executed by the

edge computing infrastructure, in a strict order (if it’s a

service function chain) or in parallel (if it’s a single expensive

process that we plan to onload using cyber-foraging. We

define the time-varying set of overall edge tasks at t as

J (t) = ∪R
r=1Sr(t), where Sr is the set of edge functions

within request r ∈ {1, . . . , R} to the edge computing

infrastructure. Due to the online nature of the edge function

request arrival, Ji(t) is a stochastic function. When sampled,

Ji(t) returns a vector (or list) of edge function identifiers to

run. We assume that edge processes consider only functions

in J (t), and they are unaware of subsequent requests. Due

to its connectivity, end-user processes may be unable to

offload computations to some edge node. Similarly, every

edge node has a limited capacity and hence is only capable

to onload a function from a limited number of processes

e.g., geographically close, or following any other distance

function.

Given a planning time horizon H , and a non-negative cost

function cij(t) : I × J (t) → R indicating the system cost

when the edge node i is assigned to the computational edge

function j, the online multi-edge function cyber-foraging

problem can be stated as the following stochastic binary

(mixed-integer linear) program:

min
x

H
∑

t=0

∑

i∈I

∑

j∈J (t)

cij(t) xij (1)

subject to
∑

j∈J (t)

xij ≤ |Bi(t)| ∀i ∈ I (2)



∑

i∈I

xij ≤ 1 ∀j ∈ J (t) (3)

xij ∈ {0, 1} ∀(i, j) ∈ I × J (t) (4)

Considered the scenario described above, in this paper we

solve the following problem:

Problem 3.1: Given the network of n edge servers and

the time varying set of edge functions J (t), solve problem

(1)-(4) in a decentralized fashion.

Reducing it from the set packing problem, it is easy to

show that even the deterministic version of Problem (3.1) is

NP-Hard. In the next section we show how, instead of finding

heuristics to solve our problem, we rely on decomposition

theory and on the the interior point method. In the next

section we describe how we can use decomposition theory to

provide a policy-based architecture to solve Problem (3.1).

IV. DECOMPOSITION ARCHITECTURE

A single process may solve Problem (3.1) logically cen-

tralized; in some cases, a logically centralized solution is

preferable. In other cases though, a distributed solution is

more appropriate, e.g., to avoid a single point of failure, or

to allow federated edge cloud providers to collaborate (or

compete) in the resource allocation process. In this paper,

we are interested in allowing edge cloud processes to solve

the problem either in a centralized or in a distributed way,

by merely choosing a (decomposition) policy. By policies

we mean the variant aspects of any of the decomposition

mechanisms (invariances), that is, dual decomposition, pri-

mal decomposition, Bender decomposition, or a combina-

tion of them, iteratively applied on different versions of

the subproblems. Each alternative decomposition leads to

a different distributed algorithm, with potentially different

desirable properties. The choice of the adequate decom-

position method and distributed algorithm for a particular

sub-problem depends on the application as well as on the

edge infrastructure provider goals. The idea of decomposing

Problem (3.1) is to convert it into equivalent formulations,

where a master problem interacts with a set of subproblems.

Decomposition techniques can be classified into primal and

dual [1]. Primal decompositions are based on decomposing

the original primal problem (3.1), while dual decomposition

methods are based on decomposing its dual. In a primal

decomposition, the master problem allocates the existing

resources by directly assigning to each subproblem the

amount of resources that it can use. Dual decomposition

methods instead correspond to a resource allocation via

pricing, i.e., the master problem sets the resource price for

all the subproblems, that independently decide if they should

use their resource to host a task or not, based on such prices.

Primal decompositions are applicable to problem (3.1)

by an iterative partitioning of the decision variables into

multiple subsets. Each partition set is optimized separately,

while the remaining variables are fixed. For example, we

could apply a primal decomposition policy by first solving

Problem (3.1) with respect to the set of edge functions that

deal with load balancing (without loss of generality, we can
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Fig. 1. Architecture Overview: different cyber-foraging solutions can
be modeled via primal and dual decompositions. A logically centralized
controller may instantiate a problem formulation according to its policies
by (1) picking an objective function c (2). Processing agents solve the
decomposed subproblems, possibly further decomposing them (3-4). Finally,
the optimal variables are returned to the cyber-foraging orchestrator (5-6),
that eventually releases the next problem partition variable set.

assume that those are the first k decision variables), and

then optimize with respect to the remaining k−n variables,

referring to all other virtual edge function services, given the

optimal values of the first k variables. Alternatively, a dis-

tributed multi-edge function cyber-foraging algorithm could

simultaneously optimize all edge functions under the control

of a single edge computing process (after electing a leader

with a decentralized consensus algorithm such as Raft [19]),

and subsequently optimize the other variables under control

of other providers. Primal decompositions can also be applied

with respect to different horizons. For example, by fixing

each time interval, the problem can be solved by optimizing

the edge function that require more frequent operation, for

example packet compressions or encryptions, and then later,

given those optimal values of the vector xfast, minimizing

the onloading or offloading costs for functions that run less

frequently, such as routing or stateful firewall (run only at

the beginning of each connection setup).

Dual decomposition approaches are based on decomposing

the Lagrangian function formed by augmenting the master

problem with the relaxed constraints. Also in this case, it

is possible to obtain different decompositions by relaxing

different sets of constraints, hence obtaining different dis-

tributed cyber-foraging algorithms. For example, by relaxing

constraints (2), we can model solutions that separate the edge

function feasibility subproblem from the final assignment

subproblem. Regardless of the number of constraints that are

relaxed, dual decompositions are different than primal in the

amount of required parallel computation (all the subproblems

could be solved in parallel), and the amount of message

passing between one phase and the other of the iterative

solution method. The dual master problem communicates

to each subproblem the shadow prices, i.e., the Lagrangian

multipliers, then each of the subproblems (sequentially or in

parallel) is solved, and the optimal value is returned, together

with the subgradients. It is also possible to devise solutions

using both primal and dual decompositions.

In general, an edge cloud infrastructure process may



instantiate a set of policies at the master problem, after

receiving an offloading request, dictating the order in which

the variables need to be optimized and on which (geolo-

cated) partition of the edge cloud. The subproblems resulting

from the decomposition can also instantiate other sets of

decomposition policies, to decide which variables are to be

optimized next, in which order, or even further decomposing

the subproblems, as shown in Figure 1.

V. DECOMPOSITIONS TRADEOFF

Every optimization problem can be decomposed to be

solved in either a centralized or distributed fashion. In this

section we analyze the tradeoffs between primal and dual

decompositions, for a sample subproblem, and we propose a

subgradient distributed algorithm to solve it. We later use this

case study to show the results of a tradeoff analysis between

optimality and speed of convergence of the iterative method

used by a CPLEX solver. As a use case study, we consider

Problem (3.1) formulated in a standard form, spliting the

variables in two partitions. The problem can be formulated

as follows:
max
u,v

cTu+ c̃T v

subject to Au ≤ b (5a)

Ãv ≤ b̃ (5b)

Mu+ M̃v ≤ h (5c)

where u and v are the sets of decision variables referring to

the first and to the second problem partition, respectively; M
and M̃ are the matrices of capacity values for the tasks in

the two partitions, and h is the vector of all robot capacity

limits. The constraints (5a) and (5b) capture the separable

nature of the problem into the two partitions. Constraint (5c)

captures the complicating constraint.

Distributed Edge Function Stochastic Cyber-Foraging by

Primal Decomposition. By applying primal decomposition

to problem (5), we can separately solve two subproblems,

one for each set of edge functions, by introducing an auxil-

iary variable z, that represents the fraction of physical and

virtual resource allocated to each subproblem. The original

problem (5) is equivalent to the following master problem:

max
z

φ(z) + φ̃(z) (6)

where:
φ(z) =

{

sup
u

cTu | Au ≤ b,Mu ≤ z

}

(7)

and φ̃(z) =

{

sup
v

c̃T v | Ãv ≤ b̃,M̃v ≤ h− z

}

(8)

The primal master problem maximizes the sum of the

optimal values of the two subproblems, over the auxiliary

variable z. After z is fixed, the subproblems (7) and (8)

are solved separately, sequentially or in parallel, depending

on the edge function requirement. The master algorithm

updates z, and collects the two subgradients, independently

computed by the two subproblems. To find the optimal z,

we use a subgradient method. In particular, to evaluate a

subgradient of φ(z) and φ̃(z), we first find the optimal dual

Algorithm 1 Distributed Stochastic cyber-foraging by Primal Decomp.

1: Given zt, solve subproblems to obtain optimal cyber-foraging φ and

φ̃ for each partition, and dual vars λ?(zt) and λ̃?(zt)
2: Send/Receive φ, φ̃, λ? and λ̃?

3: Master computes subgradient g(zt) = −λ?(zt) + λ̃?(zt)
4: Master updates resource vector zt+1 = zt − αtg

variables λ? for the first subproblem subject to the constraint

Mu ≤ z. Simultaneously (or sequentially), we find the

optimal dual variables λ̃? for the second subproblem, subject

to the constraint M̃v ≤ h−z. The subgradient of the original

master problem is therefore g = −λ?(z) + λ̃?(z); that is,

g ∈ ∂(φ(z) + φ̃(z)). For the proof, please refer to §5.6
of [1]. The primal decomposition algorithm, combined with

the subgradient method for the master problem is repeated,

using a diminishing step size, until a stopping criterion is

reached (Algorithm 1).

Distributed Edge Function Stochastic Cyber-Foraging

by Dual Decomposition. The optimal Lagrangian multiplier

associated with the capacity of the agent i, −λ?
i , tells us

how much worse the objective of the first subproblem would

be, for a small (marginal) decrease in the capacity of edge

process i. λ̃?
i tells us how much better the objective of the

second subproblem would be, for a small (marginal) increase

in the hosting capacity of edge process i. Therefore, the

primal subgradient g(z) = −λ(z) + λ̃(z) tells us how much

better the total objective would be if we move some edge

functions to be offloaded from one subsystem to the other.

At each step of the subgradient method, more resources

(e.g., edge server capacity) of each process is allocated to

the subproblem with the larger Lagrange multiplier. This is

done with an update of the auxiliary variable z. The resource

update zt+1 = zt −αtg can be interpreted as shifts of some

of the functionalities to offload to the subsystem that can

better use it for the global utility maximization. The analysis

of cyber-foraging by dual decomposition is similar to the

primal, and we do not show it for lack of space.

VI. EVALUATION

The goal of our evaluation is to assess how different

decomposition policies impact the design of an edge function

offloading (distributed) protocol. In particular, we analyze

with a CPLEX solver the tradeoff between optimality, speed

of convergence, and signaling overhead of the primal and

dual decompositions solved by the iterative methods de-

scribed in Procedure 1. We were able to reproduce our results

with different size, and we only show here representative

example of our simulation campaign, when we onload a set

of 50 edge function on an edge cloud of 100, 200, and

500 agents. Since it is always feasible to have a solution

in which an edge function is assigned to a server that

has no more residual capacity, the Slater condition [1] is

satisfied for our Problem (6). This means that there is no

duality gap i.e., the difference between the primal and dual

solutions is zero. Nevertheless, for many latency-sensitive

IoT applications is not desirable to wait for the optimal

offloading assignment when the improvements relative to

the previous iterations are small. Hence, using a diminishing
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Fig. 2. Using a diminishing step size rule αt = 0.5/t to complete the first iterations of an edge function cyber-foraging problem solved by primal
decomposition leads to a smaller optimality gap (a), at the expense of a larger computational time for each iteration (b), and for a larger signaling overhead
among the agents (c). (d) Evolution of the shadow prices λ (d) (and of the resource vector z (e)) during a distributed cyber-foraging subgradient algorithm
using dual (primal) decomposition.

step size rule αt = 0.5/t, where t is the iteration step, we

stopped our simulations after a fixed number of iteration

(Figure 2). We observe that under a primal decomposition

policy, the solution reduces its deviation from the optimal

solution (known as optimality gap) in fewer iterations, albeit

at the cost of larger computation time per iteration, and a

smaller signaling overhead (Figures 2c).
We also run our simulations with and without partitioning

the requested set of edge functions into multiple subsets.

Partitioning the set of edge functions means running such

iterative method multiple (Nt/2) times, but on problems

with smaller input size. We applied a partitioning policy of

Nt/2 partitions, of two edge functions each, where Nt is

the total number of requested edge functions to onload on

the edge cloud (Figure 2c). Note that even when a set of

edge functions is not partitioned, the distributed iterative so-

lution method used for either primal or dual decompositions

requires the passing of messages between the master and the

dual subproblems.

VII. CONCLUSIONS

In this paper we modeled with optimization theory the

edge function cyber-foraging problem, a crucial problem

that integrates data intensive and latency sensitive IoT ap-

plications with edge clouds. We then proposed to solve the

utility maximization problem using decomposition theory,

and we showed how our approach can provide insights into

a systematic design of distributed cyber-foraging solutions.

Using our CPLEX-based simulator, we showed how our

decomposition approach can be used to analyze key edge

function cyber-foraging protocol design tradeoffs. We found

how some decomposition policies may lead to a quicker

reduction of the optimality gap over the iterations of the

distributed solution, at the expense of larger computation

time per iteration, as well as a larger signaling overhead.
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